42 lines
812 B
Markdown
42 lines
812 B
Markdown
|
# 1. Two Sum (Easy)
|
||
|
|
||
|
Given an array of integers `nums` and an integer `target`, return _indices of
|
||
|
the two numbers such that they add up to `target`_.
|
||
|
|
||
|
You may assume that each input would have exactly **one solution**, and you may
|
||
|
not use the _same_ element twice.
|
||
|
|
||
|
You can return the answer in any order.
|
||
|
|
||
|
## Example 1:
|
||
|
|
||
|
```
|
||
|
Input: nums = [2,7,11,15], target = 9
|
||
|
Output: [0,1]
|
||
|
Explanation: Because nums[0] + nums[1] == 9, we return [0, 1].
|
||
|
```
|
||
|
|
||
|
## Example 2:
|
||
|
|
||
|
```
|
||
|
Input: nums = [3,2,4], target = 6
|
||
|
Output: [1,2]
|
||
|
```
|
||
|
|
||
|
## Example 3:
|
||
|
|
||
|
```
|
||
|
Input: nums = [3,3], target = 6
|
||
|
Output: [0,1]
|
||
|
```
|
||
|
|
||
|
## Constraints:
|
||
|
|
||
|
- 2 <= nums.length <= 10^4
|
||
|
- -10^9 <= nums[i] <= 10^9
|
||
|
- -10^9 <= target <= 10^9
|
||
|
- **Only one valid answer exists.**
|
||
|
|
||
|
Follow-up: Can you come up with an algorithm that is less than `O(n^2)` time
|
||
|
complexity?
|